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ABSTRACT

Meta-analysis is a statistical approach that combines the results from multiple

studies on the same scientific problem. in order to identify the overall effect or trend.

This approach allows researchers to draw more robust conclusions compared to in-

dividual studies. This paper provides a concise review of methodology and software

tools for conducting meta-analysis. Additionally, this paper presents a meta-analysis

investigating the genetic associations with body mass index (BMI) across diverse eth-

nic populations, including European, Asian, and Latino groups. By analyzing a wide

range of published GWAS studies involving various ethnicities, the aim is to identify

shared genetic variants associated with BMI across populations, as well as potential

population-specific markers. The results demonstrate that while certain genes, such

as the FTO gene, consistently exhibit significant associations across ethnicities, there

are also variations between populations. The implications of these meta-analysis find-

ings are discussed, along with notable methodological considerations that arise in the

process.
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Chapter 1

Introduction

The Genome-wide association study (GWAS) is an observational research method that

investigates the relationship between genetic variations and susceptibility to diseases

or traits across the entire genome. This approach primarily focuses on analyzing varia-

tions in single nucleotide polymorphisms (SNPs), which are the most prevalent type of

genetic variations in the genome. Since its initial publication in 2005 by the Wellcome

Trust case control Consortium (WTCCC) [Klein et al., 2005], GWAS has gained sub-

stantial popularity within the scientific community. Over the years, researchers have

successfully identified approximately 55, 000 unique loci in the genome associated with

nearly 5, 000 diseases and traits [MacArthur et al., 2017]. The widespread adoption of

GWAS has been made possible by advancements in sequencing technology, leading to a

significant reduction in the cost of sequencing the entire genome. The result of GWAS

not only assists researchers to gain insight into phenotype’s underlying biology, but it

can also aid medical practitioners in evaluating the likelihood of developing disease for

patients and offering personalized treatment.

In the realm of scientific research, it is not uncommon to encounter discrepancies

when multiple studies investigate the same problem using distinct experimental de-

signs and methodologies, often leading to divergent and conflicting conclusions. To

address this issue, researchers often perform systematic reviews. This involves gather-

ing all available research related to a specific subject and methodology, and assessing

and interpreting their findings. In the process of systematic reviews, the researchers
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often employed meta-analysis, which is a statistical method for integrating numerical

results from multiple studies. By synthesizing past evidence, systematic review and

meta-analysis provide a more comprehensive and objective summary of the available

evidence pertaining to a specific research question. Consequently, it is widely regarded

as the strongest level of evidence within the field of evidence-based medicine literature

[Herrera Ortiz et al., 2022].

When using meta-analysis for GWAS study, it offer several benefits. First, it in-

creases the statistical power of association testing, which helps to recover signals that

might be missed by single studies due to the small sample size. Additionally, meta-

analysis enhances the precision and robustness of research findings. Furthermore, it

facilitates the examination of cross-ancestry replicability and variability of genetic ef-

fects, providing valuable insights into the genetic architecture underlying the research

question. However, it is crucial to approach meta-analysis with careful considera-

tion, as careless or inadequate execution can yield misleading results. One prominent

concern is publication bias, whereby the effect estimates may be inflated due to the

selective publication of significant findings while negative or inconclusive results are

often left unpublished. Moreover, heterogeneity among studies can significantly im-

pact the outcomes of a meta-analysis, stemming from factors such as variations in

population structures, genotyping platforms, environmental conditions, or phenotype

measurements.

Scientists have been interested in investigating genetic associations with body mass

index (BMI), a widely used measure of body fat based on an individual’s height and

weight. Numerous studies have leveraged GWAS to explore the genetic underpinnings

of BMI. For example, the study by [Speliotes et al., 2010] identified 32 loci associated

with BMI using data from 46 studies and a sample size of up to 123, 865 individuals.

Building upon these findings, [Locke et al., 2015] expanded the scope by aggregating

data from 80 GWAS studies and 34 Metabochip studies, ultimately identifying 97

loci associated with BMI. Furthermore, [Yengo et al., 2018] conducted a meta-analysis

with a large sample size of approximately 700, 000 individuals, leading to the discovery

of over 900 loci associated with BMI. Notably, a trend observed in these studies is
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that larger sample sizes contribute to the identification of more significant loci, which

encourages researchers to use an even larger sample size in future studies.

It is important to acknowledge a crucial limitation in the existing body of literature:

the majority of studies with large sample sizes predominantly consist of participants

of white European descent, thus overlooking a significant portion of the world’s popu-

lation. For instance, a research paper by [Nam et al., 2022] explores the genome-wide

associations with BMI using data from the Japan Biobank.

The outline of this project is as follows: Chapter 2 provides an overview of the

fundamental methods of meta-analysis, along with an examination of the available

software commonly used. Chapter 3 presents the results of the meta-analysis conducted

as part of this project. Specifically, our meta-analysis incorporates recent studies on

the Japanese, Korean, Taiwanese, and Latino/Hispanic populations. Our objective is

to discover novel genetic variations in the human genome that influence body mass

index (BMI). Additionally, we aim to compare the effects of these genetic variations

among different ethnic groups.
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Chapter 2

Review

2.1 Methods

There are generally two types of meta-analysis that are commonly performed in prac-

tice. The first type is aggregate-based meta-analysis, which combines summary data

such as means, standard deviations, and sample sizes from individual studies to esti-

mate the overall effect. The second type is patient-based meta-analysis, which pools

individual-level data from multiple studies instead of just the summary data. In gen-

eral, patient-based meta-analysis is often more time-consuming and cumbersome com-

pared to aggregate-based meta-analysis, since it requires the researchers to access,

manage and analyze large sets of data from different sources. Furthermore, the paper

showed that these two types of meta-analysis are similar in terms of statistical power

[Lin and Zeng, 2010].

Meta-analysis commonly follows the following basic principles:

• In the first stage, calculate the summary statistics from each study, which describe

the effect estimate in a consistent way. Depending on the nature of the study,

the data type can be continuous, binary, among others.

• In the second stage, calculate the combined effect estimate as the weighted aver-

age of the effects estimated in each study:

θ̂ =

∑
YiWi∑
Wi

,
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where Yi of the effect estimated in the i-th study, Wi is the weight given to the

i-th study, and the summation is across all studies.

• Consider whether the true effect is the same or varies across different studies.

If it is assumed the true effect is the same, then performed a fixed-effect meta-

analysis. Alternatively, perform a random-effects meta-analysis in which the

estimated effects will follow a certain distribution.

• Assess whether there is heterogeneity among the results of the separate studies.

Test whether the variations are due to statistical error or a true difference.

Let us assume there are a total of K independent studies. For each study, we

observed the following effects on each study:

Yi = θi + ei, (2.1)

where Yi denotes the observed effect in the i-th study, θi denotes the corresponding

unknown true effect and ei denotes the sampling error for i-th study with variance s2i .

While The fixed-effect model treats θi to be the same across all studies, the random-

effect model assumes the true effect θi as a random variable with mean µ and variance

σ2.

2.1.1 Fixed-effect meta-analysis

The most common and simple version of the meta-analysis procedure is referred to as

the inverse-variance method. It can be applied to different types of effect measures,

such as risk ratios, odds ratios, or mean differences. This method assigns the weight

to each study to be the inverse of the variance of the effect estimate. Studies with

larger sample sizes typically have smaller standard errors, resulting in a greater weight

being assigned. It is commonly used for the fixed-effect model where the true effect is

common to all studies. The weighted average is

θ̂ =

∑
Yi(1/s

2
i )∑

(1/s2i )
,

5



where the sum is over all studies. The standard error of the pooled effect estimate is

SE(θ̂) =

√
1∑

(1/s2i )
.

The confidence interval is given as θ̂± zα/2SE(θ̂), where zα/2 is the critical value from

a standard normal distribution corresponding to a given significance level α.

In certain cases, the effect estimate and standard error may not be available in the

summary statistics of an individual study. Instead, only the sample size and direction of

effect estimated are provided. In such scenarios, the Z-score method can be used as an

alternative approach, which is implemented in the software METAL[Willer et al., 2010].

Suppose there are multiple studies with each sample size of Ni, the direction of effect

for each study ∆i and p-value Pi are given. The Z-score is

Zi = Φ−1(Pi/2)× sign(∆i), (2.2)

where Φ(·) denotes the cumulative normal distribution. The smaller p-value is assigned

to the larger Z-score and vice versa. The overall Z-Score is combined across samples

in a weighted sum, with weights proportional to the square root of the sample size for

each study:

Z =

∑
i Zi

√
Ni√∑

iNi

, (2.3)

also, the overall p-value is P = 2Φ(−|Z|).

There are various methods that can be used to conduct fixed-effect meta-analyses.

The Mantel-Haenszel method [Mantel and Haenszel, 1959] is best suited for binary

effect measures and sparse data, and uses a different weighting scheme depending on the

type of data being analyzed. Another method is the Peto method [Yusuf et al., 1985],

which is appropriate for binary data with rare events.
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2.1.2 Random-effect meta-analysis

The inverse variance method can be biased or misleading when there is heterogeneity

among the studies since it does not account for the variation in the true effects across

studies. In the presence of heterogeneity, the true effects θi are assumed to be random

variables with mean µ and variance σ2. In order to obtain an estimate of the true

effect, it is common to employ a two-step approach. First, obtain an estimate of the

variance as σ̂2. Then, estimate the mean of θi as

µ̂ =
∑

ŵiYi/
∑

ŵi,

where ŵi = (σ̂2 + s2i )
−1.

There are many methods for estimating the heterogeneity variance, which is com-

pared and studied in the paper [Langan et al., 2019]. The method proposed by Der-

simonian and Laird [DerSimonian and Laird, 1986] is most commonly used, and it is

available in most software packages for meta-analysis. The estimator is defined as

σ̂2
DL = max

{
0,

∑k
i=1(1/ŝ

2
i )(θ̂i − θ̄)2 − (k − 1)∑k

i=1(1/ŝ
2
i )−

∑k
i=1(1/ŝ

2
i )

2∑k
i=1(1/ŝ

2
i )

}
,

where ŝi is the estimated standard error for study i, θ̂i is the effect estimated for

study i and θ̄ is the mean effect estimate. There are several other estimators proposed

in the literature, such as Hartung-Makambi estimator [Hartung and Makambi, 2003],

which is a correction of Dersimonian and Laird method so that the estimator is always

non-zero.

2.1.3 Measuring heterogeneity

During the process of conducting a meta-analysis, it is frequently observed that there is

heterogeneity among the effect estimates obtained from different groups. This hetero-

geneity can be due to a variety of factors, including differences in participant charac-

teristics or variations in study design. For instance, when examining the effectiveness
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of the COVID-19 vaccine, it may be found that the vaccine has a more pronounced

impact on reducing mortality rates among older individuals compared to younger ones.

Consequently, researchers undertaking a meta-analysis must take into account these

variations in order to derive meaningful conclusions. Furthermore, investigating the

source of heterogeneity holds scientific significance as it provides researchers with a

more comprehensive understanding of the original problem.

Various methods can be utilized to measure the degree of heterogeneity in meta-

analysis. One such method is the forest plot, which presents the effect estimate, stan-

dard error, and confidence interval for each study. If the confidence intervals of indi-

vidual studies do not overlap, it indicates the presence of heterogeneity. Additionally,

statistical tests like the χ2 test statistic can be used to evaluate heterogeneity, which

is defined as

Q =
k∑

i=1

(θi − θ̂)2

s2i
,

where k is the number of studies, θi is the effect estimate for study i, θ̂ is the inverse-

variance weighted average, and si is the standard error for study i. Under the null

hypothesis that there is no heterogeneity, Q follow the χ2 distribution with k − 1

degrees of freedom. The p-value is can be obtained referring χ2 distribution.

One way to measure the degree of heterogeneity is by using the I -squared statistic.

It is defined as:

I2 =
Q− df

Q
× 100%,

whereQ is the χ2 statistics and df is the degrees of freedom. I2 describes the percentage

of the variability in effect estimates that is due to heterogeneity. According to the

Cochrane Handbook [Higgins et al., 2019], some rough guidelines for interpreting I-

squared are:

• 0 % to 40 % : might not be important;

• 30 % to 60 % : moderate heterogeneity;

• 50 % to 90 % : substantial heterogeneity;
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• 75 % to 100 % : Considerable heterogeneity.

When there is a significant amount of variation in a meta-analysis, researchers use

different strategies to identify and explore the underlying sources of this variability.

These strategies include meta-regression, subgroup analysis, or using a random-effects

model. Meta-regression involves adding covariates to the meta-analysis model, such

as age, gender, or ethnicity of the samples. Subgroup analysis is another valuable

approach that compares the effect estimate within different subgroups. Alternatively,

random-effect meta-analysis incorporates heterogeneity by modelling the true effect as

a probability distribution.

2.2 Software

There are numerous software packages available for conducting meta-analysis. Some

popular commercial options include MetaWin, Comprehensive Meta-analysis (CMA),

and Review Manager 5 (RevMan 5), which are user-friendly but require a subscription

to use. Alternatively, one can conduct meta-analysis using Microsoft Excel with add-ins

such as MIX or MetaEasy. There are various packages in the R program - a paper by

[Polanin et al., 2017] reviewed and compared 63 R packages designed for meta-analysis.

Among these packages are general ones like meta, metafor, and rmeta, which provide

the necessary functions to conduct a basic meta-analysis. For instance, metafor allows

the user to calculate effect sizes, plot synthesis results, handle missing data, perform

sensitivity analyses, and assess publication biases. Additionally, there are specialized

packages designed for specific scientific disciplines, such as epiR, which is tailored for

epidemiological data.

One unique issue in GWAS meta-analysis is the inconsistent coding of SNPs across

different datasets, commonly known as the ’strand’ issue. For instance, if a SNP has

alleles A and T, one study may code A as the reference allele while another study

may code T as the reference allele. This inconsistency can result in the reversal of the

effect directions of the SNP in the meta-analysis. Some meta-analysis software have

the capacity to automatically remove or correct mislabeled SNPs.
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Another challenge is population stratification, which arises from differences in allele

frequencies between subpopulations within a study or across different studies. This

can introduce confounding factors in the association between SNPs and traits. For

example, in a GWAS examining the association between a SNP and hypertension, if

the study population includes both Europeans and Africans and the SNP has a higher

frequency in Africans, a positive association between the SNP and hypertension may

be observed, even if the SNP has no causal effect. In such cases, the ethnicity of

the individuals can act as a confounding variable. Several methods, such as genomic

control or principal component analysis, have been developed to address this issue and

are often implemented in specialized software tools.

Furthermore, GWAS data files are commonly available in various formats and are

often substantial in size. Therefore, an ideal software tool for GWAS should possess the

capability to handle multiple file formats, efficient memory management, and fast com-

puting capabilities. Table 2.1 provides an overview of some commonly used software

packages along with their respective features.

Table 2.1: Common software used for GWAS meta-analysis

Software package METAL GWAMA PLINK GWAR
Fix-effect analysis ✓ ✓ ✓ ✓

Random-effect analysis ✓ ✓ ✓
robust statistics ✓

File format and separator versatility ✓ ✓ ✓
Resolve label mismatch ✓ ✓

Genomic control correction ✓ ✓

The METAL [Willer et al., 2010] software is commonly used to perform meta-

analysis. The METAL software operates in a command-line environment and can

be run on Windows, Mac, and most Linux systems. It has efficient memory manage-

ment and is relatively fast. It can handle various file formats and delimiters with ease.

The software implements two types of meta-analysis: an inverse variance method and

a weighted score method based on the sample size, p-value and direction of effect in

each study. However, it does not incorporate a random-effect meta-analysis feature,

nor does it generate graphs to visualize the result. It is common to complement the

used for METAL with the R packages mention above.
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Chapter 3

Meta-analysis of GWAS of body mass

index

3.1 Cohorts information

The GWAS Catalog is a comprehensive database that compiles data from previously

published genome-wide association studies. We conducted an extensive search of jour-

nal papers using the GWAS Catalog website and identified studies that included sum-

mary statistics of genome-wide association with body mass index (BMI). These sum-

mary statistics store the association level of single nucleotide polymorphisms (SNPs),

which are the specific locations in the human genome that show the most variations in

a population. For example, the study [Yengo et al., 2018] reports that a specific SNP

located at chromosome 2 and base pair position 3221999 was found to cause an average

increase of BMI of 0.021(s.e.± 0.01)kg for individuals with an allele of Adenine(A) in

this location, with a p-value of 5×10−10 indicating that the estimated effect is different

from zero.

Our meta-analysis comprises several studies conducted from 2015 to 2022, and we

have summarized the cohorts in Table 3.1. The largest cohort is the UK Biobank(UKB),

which is a biomedical database that holds data on over 500, 000 European-descent indi-

viduals from the United Kingdom, including detailed health information, genetic data,

and lifestyle factors. The UKB is a unique resource due to its size and scope and has
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already contributed to many important discoveries. Similar biomedical databases have

also been established in many other countries, such as Taiwan biobank, Korea biobank,

and Japan biobank. In total, the sample size of the meta-analysis exceeds one million

and comprises individuals from various ethnic backgrounds.

Table 3.1: Information of cohorts

Cohort name Sample size Ethnicity Reference
UK Biobank 456, 426 White European [Yengo et al., 2018]

GIANT 322, 154 White European [Locke et al., 2015]
Korea biobank 72, 298 East Asian [Nam et al., 2022]
Taiwan Biobank 21, 930 East Asian [Wong et al., 2022]
Japan biobank 179, 000 East Asian [Sakaue et al., 2021]

HISLA 56, 161 Hispanic/Latino [Fernández-Rhodes et al., 2022]

3.2 Results

3.2.1 Significant loci

For the cohorts listed in the table 3.1, we conducted a fixed-effect inverse-variance

weighted meta-analysis using the METAL software. We consider a subset of approx-

imately 2.3 million SNPs showing consistent alleles with UKB and GIANT cohorts.

The results of the meta-analysis can be visualized with the Manhattan plot 3.1, which

shows the association level of SNPs with BMI across the entire genome. The plot

annotates the genes that are nearest to the SNPs with the strongest association. The

plot suggests a polygenicity phenomenon, in which multiple regions in the genome are

significantly associated with BMI. Figure 3.5 displays the regional association plots for

the genes AL136114.1 and THEM18, which shows that multiple SNPs in the region

have a tendency to correlate and exhibit similar significant levels. We also evaluate

the presence and degree of bias using the Q-Q plot 3.2, which indicates a minor bias

of observed p-value causes by population stratification.

We used a strict significant threshold 5×10−8 for the p-value to address the issue of

false positives, which is common in statistical genetic research due to the large number

of SNPs involved. Out of the approximately 2.3 million SNPs analyzed, we identified
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Figure 3.1: The Manhattan plot shows the significant level across the whole genome.
The x-axis denotes the chromosome and location of SNPs. The y-axis denotes the
p-value in a logarithmic scale of 10. The dashed line indicates the significant threshold
of the p-value. The genes with the most significant effects are annotated.

Figure 3.2: Q-Q plot compares the observed and expected distributions of p-values.
The x-axis shows the expected p-values under the null hypothesis of no association,
and the y-axis shows the observed p-values for each SNP. The p-values are plotted on
a log 10 scale to highlight the small values. The left-hand side shows the Q-Q plot of
the Meta-analysis results, while the right-hand side shows the Q-Q plot after removing
all significant SNPs with p < 5× 10−8. The sample quantile on the right-hand side is
slightly above the diagonal line, indicating a minor negative bias of p-value.

61, 507 SNPs that were statistically significant. This corresponds to a total of 1, 966 in

different loci, where each locus was defined as a window of 500 Kb. For comparison,

a previous GWAS of BMI [Yengo et al., 2018] identified a total of 41, 103 significant

associated SNPs correspond to 1, 239 loci. In total, we identified 27, 616 new significant

associated SNPs.

Generally, many non-causal variants are significantly associated with a trait of

interest due to linkage disequilibrium. Those significant SNPs are clustered in loci,

13



which are sets of correlated variants that all show a significant association with the trait

of interest. To identify causal variants, further analysis is required, such as conditional

association analysis using GCTA-COJO software [Yang et al., 2012]. However, we do

not have access to the necessary information, such as the sample size of variants, to

perform this analysis. As an alternative, we use a simple approach of identifying the

likely causal variant by selecting the SNP with the lowest p-value among loci with

more than 10 significant SNPs. In this way, we have identified 774 different loci, in

which the location can be visualized in a bar plot 3.3. In particular, we discovered the

highest number of new loci in chromosome 2. Further, the largest density of association

SNPs was observed on chromosome 2 near the genes NBAS and DDX1, where 193 are

clustered within 500kB of each other.

Figure 3.3: The left-hand side displays the distribution of newly discovered loci. The
right-hand side is a bar plot displaying the number of newly discovered SNPs in various
loci. The horizontal axis represents the chromosome, while the vertical axis represents
the number. The colour gradient is used to differentiate between different loci within
a chromosome.

Table 3.4 presents the top 10 new loci with the most significant association. The

result indicates that the A/G alleles at chromosome 6 position 20655110 lead to an

average increase of 0.0249 in BMI. The nearest gene to this particular SNP is CD-

KAL1. The effect estimate direction is consistent across all studies, but the I2 and χ2

test statistics suggest significant heterogeneity in the effect estimated across studies.

The regional plot in 3.5 shows the association level in the regions around the markers

rs9368216 and rs10515239. The top plot indicates that some of the significant associ-

ated SNPs lie in the intergenic area, while the bottom plot shows that they lie in the

14



gene area called CDKAL1.

Figure 3.4: The following table shows the 10 new SNPs with the most significant
estimated effect. The table includes information on the SNP marker label, chromosome
and position of the SNP, the nearest gene, alleles, estimated estimate, standard error,
and p-value. The ”hetISq” column provides I2 statistics, which measure heterogeneity
on a scale of 0−100%. Additionally, the ”HetChiSq”, ”HetDf”, and ”HetPval” columns
indicate the chi-squared statistics, degree of freedom, and p-value of the test statistics,
respectively.

We utilized the UCSC Genome Browser gateway to conduct research on the infor-

mation of 10 genes with the most significant association level. The provided table 3.2

presents details regarding the type and function of these genes. CDKAL is a gene that

codes for proteins and is expressed in pancreatic islets. Previous studies have linked

this gene to susceptibility to type 2 diabetes, which is not surprising given that BMI is

also associated with diabetes. In addition, there exist genes located in the intergenic

regions that do not play a role in protein coding, but rather serve as regulators and

facilitators.

3.2.2 Heterogeneity analysis

We discovered that the new significant loci have significant heterogeneity of effect

between various groups. The forest plot 3.6 displays the effect estimate from the

different studies. The plot indicates that the effect estimates for SNP marker rs9368219

are positive for the East Asian population, but negative for the European and Hispanic

populations. Conversely, rs1861866 appears to exhibit the opposite effects. For SNP

markers rs979614 and rs7103873, the effect estimates are not statistically significant for

European and Hispanic populations, but demonstrate a negative effect on the Asian
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Figure 3.5: A regional plot is shown for the genes ELL2 in chromosome 5 and CDKAL1
in chromosome 6. The x-axis indicates the position of the SNP(measure in Mb), while
the y-axis represents the p-value in a logarithmic scale of 10. The colour gradient
highlights the SNPs that are likely the causal variants. The bottom of each plot
indicates the location of the protein-encoding genes.

population.

We also conducted separate meta-analyses for each ethnic group. The study iden-

tified genome-wide significant SNPs (p < 5× 10−8) in the European, East Asian, and

Latino/Hispanic groups, which are summarized in table 3.3. Note that meta-analysis

enhances the power of Genome-Wide Association Studies (GWAS). As a result, the

trans-ancestry meta-analysis detects a greater number of significant SNPs (61, 507)

compared to the sum of its subgroups. To compare the results across the ethnic groups,

a Manhattan plot was used to display the genetic variations of different populations

3.7. The plot indicates that the FTO gene is the most common variant with the high-

est level of significance for all populations. Additionally, genes such as RSL24D1P11,
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Gene Type Tissue specificity Disease association
CDKAL1 protein coding pancreatic islets type 2 diabetes
RPL12P41 pseudogene - -
LINC01554 intergenic area - -
KCNQ1 protein coding heart, pancreas, prostate,

kidney, small intestine
and peripheral blood
leukocytes

hereditary long QT syn-
drome 1, Jervell and
Lange-Nielsen syndrome,
and familial atrial fibrilla-
tion

SNRPEP3 pseudogene - -
CDKN2B-AS1 antisense RNA - intracranial aneurysm,

periodontitis, endometrio-
sis

KRT18P9 pseudogene - -
BDNF-AS antisense RNA - -

FTO protein coding ubiquitous growth retardation and
early death

NEK4 protein coding highest expression in
adult heart, followed by
pancreas, skeletal muscle,
brain, liver, kidney, lung
and placenta

retinitis pigmentosa 23

Table 3.2: Functional summary of discovered genes

AL136114.1, THEM18, and others are also significantly associated with BMI across

all populations. The study also identified 492 significant loci that are uniquely in

the Asian population and 2 significant loci that are uniquely in the Latino/Hispanic

population, which is summarised in table 3.4.

Cohort ancestry sample sizes number
of GWAS
significant
SNPs(p <
5× 10−8)

number of
non overlap-
ping GWAS
loci(defined
as a window
of 500Kb)

Cumulative
length
of non-
overlapping
GWAS loci
in Mb(%
of genome
length)

European 778, 580 41, 103 1, 239 619.5(20.4%)
East Asian 273, 228 18, 332 842 421(13.9%)

Latino/Hispanic 56, 161 193 14 7(0.23%)
Trans-ancestry meta-analysis 1, 107, 969 61, 507 1, 966 983(30.4%)

Table 3.3: Summary of results from within-ancestry and trans-ancestry GWAS meta-
analyses
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Figure 3.6: The forest plots display the effect estimate and confidence interval of various
studies

Chromosome Lead SNP p-value number of SNPs in a locus
19 rs11671664 4.844−84 81
5 rs261967 4.016−63 86
11 rs2237892 1.123−54 24
9 rs10965250 7.049−50 6
4 rs1996023 4.439−45 14
...

...
...

...
1 rs545608 1.924−10 10
16 rs1558902 3.391−32 51

Table 3.4: Unique discovery in the East Asian population(shown on the top) and
Latino/Hispanic population(shown on the bottom)

3.3 Discussion

We have discovered numerous new loci that show significant association with BMI.

Some of these loci are common across all ethnic groups, while some are unique to

specific groups. To obtain a comprehensive map of genetic variants linked to human
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Figure 3.7: The Manhattan plot displays the genetic variations of different populations,
with the Asian population at the top, the European population in the middle, and the
Latino/Hispanic population at the bottom.

weight, we suggest future studies with even larger sample sizes and more diverse popu-

lations. Additionally, a potential avenue for future research is to explore the biological

mechanisms of these significant SNPs. This could involve identifying the immediate

effects of causal variants, such as whether they are responsible for protein-encoding or

serve as enhancers, as well as examining the network effects that lead to changes in

cellular and physiological function.

Our research has revealed a significant increase in the number of associated SNPs

compared to previous studies that focused only on the European population [Yengo et al., 2018].

However, it is important to acknowledge the potential bias introduced by conduct-
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ing a cross-ethnicity meta-analysis. To mitigate this, various methods such as ge-

nomic control (GC) correction, principal component analysis, or linkage disequilibrium

score regression (LDSC) can be used. Nevertheless, none of these methods can per-

fectly correct the bias, especially with a large sample size. In fact, a current research

area is finding a more effective method for addressing population stratification bias

[Uffelmann et al., 2021].

Our findings suggest that BMI traits are not determined by a single genetic variant,

but rather by multiple genetic variants, each of which has a small effect. This polygenic

nature of BMI is also observed in other similar traits such as height, skin colour, and

various diseases. Additionally, environmental factors and gene-environment interac-

tions play a significant role in determining these traits. As a result, understanding the

biological mechanisms of these variants and exploring potential therapeutic interven-

tions is challenging - as in the previous research of GWAS with BMI, the result SNPs

explain 6% of the variance in the population. Novel methods are required to address

polygenicity and facilitate the translation of GWAS findings into biological insights.
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